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A body with a hole in it has a thin ligament if the boundary of the hole approaches the outer surface of the 

body. The asymptotic form of the stress-deformation state of two- and three-dimensional bodies with 

ligaments is determined, using the width of the ligament as a small parameter. A boundary-layer effect 

arises near the ligament and can be described, in the two-dimensional case, by a system of ordinary 

differential equations which can be solved explicitly. The stress-deformation state turns out to depend 

closely both on the value characterizing the degree to which the ligament has narrowed, and on the overall 

geometric structure of the body. Analysis of the asymptotic formulae indicates that the collapse of a 

ligament cannot be a quasistatic process (the Griffith energy balance is destroyed). In the three-dimensional 

case, the boundary layer is described by an elliptic system of equations in the plane. 

1. STATEMENT OF THE TWO-DIMENSIONAL PROBLEM 

LET GO and G be regions in the plane, bounded by simple smooth closed contours TO and r which 
touch at the origin of coordinates 0, and let Go C G. We reduce the characteristic size of the region 
Go to unity and define (dimensionless) Cartesian coordinates x = (x1, x2) by taking the Ox1 axis 
along the tangent to To, and the Ox2 axis into Go. Let 0 < E be a small parameter and let G, = {x: 
(x1, x2 - E) E G,,}, r. = aG, , QE = G\G, (Fig. 1). In a small neighbourhood V of the point 0 it is 
assumed that the region sl, is defined by the relation 

-h_(x,)<xz <E+h+(x,) (1.1) 

ht(x,)=x:m(at +0(x,)), XI -to (1.2) 

In (1.1) and (1.2), h? are smooth functions, h = h, + h_>O, m is a natural number and 
a=a++a_>O. 

FIG. 1. 
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The purpose of this paper is to investigate the asymptotic form as E+O of the solution of the 
problem of the plane deformation of a body In, with a thin ligament 

ctv, ~Vx~(~,X)+(X+CI)V*VS~u(&,X)=O, XESZ, (l-3) 

~(~)(~; E;X)=P(X), XEr, o@q?K c,x)=O, x E r< (1.4) 

Here u = (ui, u2) is the displacement vector, a(u) is the stress tensor, a(“) = an, n = (ni , rz2) is 
the unit vector of the external normal, and p E Cm(r) is the applied load. 

The problem of a thin ligament formed by a circular hole which approaches the boundary of a 
half-plane has been studied in [l-3], where results on the asymptotic behaviour were obtained from 
the exact solution of the whole problem. Below, we make a direct asymptotic analysis, from which 
the asymptotic form for non-canonical regions, in which it is difficult to construct explicit solutions, 
can also be determined. In addition, we study the dependence of the asymptotic form of stresses in 
the ligament on the extent to which it narrows [on the index m in (l-2)]. Problems concerning a thin 
ligament between two parallel cracks treat a similar theme and use similar methods of investigation 

[4,51. 
In the limit as e--+0, the sides of the ligament touch, such that the doubly-connected region Kl 

becomes a simply connected region fi O, the boundary of which contains a singular point 0, the top 
of two peaks. Outside the neighbourhood of the ligament, the asymptotic form of the solution of 
problem (1.3) and (1.4) can be described by solutions of limit problems in the region QO. A 
boundary-layer effect arises in the ligament. This boundary layer is found in Sec. 2 by constructing 
the asymptotic form of the solution of problems in thin regions [6-91 and using the “rapid” variables 

t=(fr,t?), ii, =E-7XI, t2 =c-Ixa, r=wr* (1.5) 

A similar procedure also yields asymptotic expansions of the limit problem near the singular point 
0 (see Sec. 3; a proof of the resulting formal expansion is given in [lo, 111). In Sec. 4, the method of 
matched asymptotic expansions (see 112, 131 and elsewhere) is used to find the global asymptotic 
behaviour. Corollaries and generalizations of the formulae obtained can be found in Sets 5 and 6. 
Finally, the analogous three-dimensional problem is discussed in Sec. 7. 

2. THE ASYMPTOTIC FORM OF THE SOLUTION OF THE PROBLEM IN A THIN 

LIGAMENT 

After changing to variables (IS), the Lame operator L (V,) of (1.3) can be written as follows: 

L(E-Ya,,E-‘a,)=E-2IM(O),: +eQ(M’) tJ%P))a,a, +e%ff%j’( (2.1) 

M(‘)=diag{/~,2ytXl, M(*)=diag12~+h,1,) 

MI(:l) “&2) = /J, &y)+qyL~ 

&f!1')=M~'2)~0, j= 1,2; 
ii Q = 1 - 7, ai = a/ati 

The operator in the brackets in (2.1) contains a small parameter in some of its higher derivatives. 
It is therefore natural to use the algorithm of [6-91. We will first derive an expansion of the 
differential operator B ‘(x, 0,) similar to (2.1) from boundary conditions (1.4). According to (1.1) , 
the equation of the boundary in coordinates 5 has the form 

52 = *H,(e,Ell (2.2) 

H+(E, Es)= 1+ E-ih+(e~~if, H_(e,.$j1)= e-‘h_(eY&). 

We should emphasize that the function H_ + is bounded in the zone I& / Cconst, where the 
asymptotic form of the solution is being investigated. The vectors of the external normal it*(~, & ) to 
the curves (2.2) are given by the formulae 
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Thus 

_ PH~M%,~. 

We will seek the asymptotic representation of the solution in the form of the series 

(2.3) 

U(E,X)+ Z ai j j,oe (u (&;I)+-Uj(C;,,Ez)), .i=(uj,J). (2.4) 

The index T in (2.4) will be chosen below. We substitute (2.1), (2.3) and (2.4) into Eqs (1.3) and 
(1.4), restricted to a neighbourhood of the point 0, and collect coefficients of like powers of E (the 
calculation is simpler if the dependence of H+- on E is disregarded). As a result, we obtain a 
recurrence relation of ordinary differential equations (with respect to the variable &E [-H_(E, &), 
H+(E, &)I to find the functions Uj of (2.4); the vector-functions uj are assumed to be arbitrary for 
the time being. The conditions for these problems to be solvable for Uk give a system of ordinary 
differential equations (with respect to &), which uj and r~j must satisfy. Only a few terms of the 
series (2.4) will be needed. We will therefore give expressions for the vectors Uj only for the case 
where the components I? = u and w” = w are non-zero and the other functions ui and I& are equal to 
zero 

up =lJ,” =o; u: =-.!$a,w. u; =o 
u: = 0, uj = hp t 3p)-~(sga:w - ,f2alu) 

u: =(~t.2~)-~((3~t41.o(‘/~~:a:~~~- ‘/i5:a:u)t(ht~)~2a,[-(H,2tHf)a:H?t 

t2(H+ -H_)a,u]), Uj’=O (2.5) 

The given solvability conditions arise when determining U; and @ and have the form 

a,(-‘lb(H+3 tH-‘)a:wt %(H+ tH_)a, [(H+‘+M)a:w]l - 

-. a,[H(H++H._)a,(H+-H_).a’vl=F-j’ (2.6) 

-a,(H+tH_)J,vt4;_a,(H,2-H~),:w=., (2.7) 

Here FI and F! are certain functions on the real axis R, defined by the right-hand side p of the 
original problem. 

The system (2.6), (2.7) is not formally self-conjugate. To reduce it to symmetric form, we apply 
the operator %a, (H, -H_) to the second equation and add the result to the first. The system 
becomes self-conjugate after (2.6) has been replaced by the equation 

--?4a:(H,’ - Hj)a,v t ‘/,a:(H: + Hl)afw = Fz (2.8) 

Here F2 = fi + Ma, (H, - H_)F, . 
Thus, the limiting problem (E = 0) corresponding to a stress-deformation state in a ligament is 

described by system (2.7), (2.8) in which, according to (1.2), (1.5) and (2.2), we must put 

H+(t,)= j+a+?, H_(.$,)=cz_$~ (2.9) 

We further need the solutions $ = (u, w) of the uniform system (2.7), (2.8) on the straight line R. 
Three of them are obvious 

rL’(~I)=(j,o), IL2(L)=(0, 1). G3&)=(0,t,) (2.10) 

Another three are obtained by integrating the system. To shorten the formulae, we introduce the 
notation 
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(R,z)(s‘,) =I z(r)dr - q-@(r) -z(-rwt, (&z)(5‘1) = ;a - r)z(Wt + 

+ Hjr(z(r)+ z(-t))dr - Ml, s”(z(t) - z(-t>)dr 

(2.11) 

0 0 

Note that a, Ri z = z and a: R2z = z. The solutions mentioned have the form 

$I’+~ “(RI@{, R,\kf), j= 1,2,3 (2.12) 

\kf = -4K4(H+3 +H.!), \k; = -6K4(H,2 -Hz) 

\k; = 6&K4(H+Z -Hz), ‘l’; = 12&K3 

\k: = -6k4(H,Z -Hz), \k; = -12K3 ; H =.H+ + H_ (2.13) 

We also introduce solutions I,!J’-‘~ of the uniform system (2.7), (2.8), in which the quantities 

H%) = &4? are used instead of H, of (2.9). In addition to the obvious solutions (2.10), this 
system is satisfied by the vector-functions @“j’3, j = 1, 2,3, where 

~0’+3(~1)=A;35~(bI,~!F:--Zm) (2.14) 

& = l-2m, & =2-4 m, f13 = 1-4m, A, =a+ +a_ 

b: = -4(a: t a”_)(1 -2m)-‘A;‘, b: = -3(1-2m)-‘(1 -4m)-‘A_ 

bf = 3(1-2m)-‘A_, b: =2(1-2m)-‘(1 -3m)-’ 

b: = -6(1-4m)-‘A_, b: = -6(1 -3m)-‘(l-6m)-’ 

By virtue of (2.11), (2.13) and (2.9), the solutions (2.12) can be expanded in series 

J/‘+J(c;t)= +aj+a (Sl)~~~lCjk~~(SI)+(1,1t,Il-2m)‘0(ltl14-1~~ tIGfm (2.15) 

Cl2 =C21 =C32 =C31 =O 

Cl1 =Jhr)dr, Cl3 = c3 1 = j$(t)dt = j%:(t)& 

0 0 0 

c22 = -j%Qt)dr, c33 = j%:(t)& (2.16) 
0 0 

It follows from (2.16) and (2.13) that the matrix c = jIcjkj/ comprising the coefficients of the series (2.15) is 
symmetrical and negative definite. This is true of any functions H + which increase sufficiently rapidly at 
infinity. We denote the matrix differential operator of system (2.7), (2.8) by T(& , ~3,). The scalar product 

+‘+j. T+3+k IS integrated by parts in the interval (-R, R), the terms outside the integral are calculated using the 
asymptotic formulae (2.19, and taking the limit as R --, 03 we obtain the representation 

X(9,Ip;1)>(4+2.3Yi)~1~(H++H_)la,lp,Ia+'/,(H~+Hl)la:~p,I'dt., 
I 

Thus, E is the Gram matrix, which possesses the properties mentioned. 

3. ASYMPTOTIC FORM OF THE SOLUTION FOR A DEGENERATE LIGAMENT 

We will consider the limit problem (e = 0) (1.3), (1.4). Since the load is self-balanced, a solution 
of the problem exists which possesses finite elastic energy. We will find the asymptotic form of the 
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solution near (0, +0) and (0, -O), the tops of the peaks formed by the contours I’, and r. The 
procedure for const~cting the asymptotic form is essentially the same as that for finding the 
coefficients of (2.4), with the initial variables x being used instead of the rapid variables 5, and the 
functions ht from (1.2) taken as the functions H* in (2.2). We should emphasize that the equations 
of the boundary x2 = +h* (xi) no longer contain a small parameter, but the ligament is still thin, by 
virtue of relation (1.2). 

We will first consider the case when p = 0 in the neighbourhood of the point 0. Then the 
asymptotic form of the solution u” of the limit problem (1.3), (1.4) in the region a0 has the form 

UO(X)=(kf-kJxz, k: +kjx,)iO(exp(~,fn.lt’-2m)), x, -*+O (3-I) 

Here A$ are certain constants, and O<Se is a small number. Since the solution u” is defined to 
within rigid displacements, it can be chosen so that 

k/ = ‘ki, j= 1,&j (3 2) 

We further need the displacement fields Zj in the region C&j corresponding to concentrated effects 
at the tops of the peaks (the analogues of the longitudinal and shear forces, and the bending 
moment). More precisely, the vectors 2’ satisfy the homogeneous equations (1.3) in C& and (1.4) on 
~~o\O and near the tops of the peaks they possess the asymptotic forms 

Z$) 5 *U(l,xz, a/ax,)*i+3(X), x* -+ 20 (3.3) 

Let us explain the notation used in (3.3). U denotes the matrix differential operator, defined using 
vectors with components (2.5) 

k=l 
(3.4) 

Note that in (3.4) U: = 0, but the explicit form of U,” is not required [the possibility of 
constructing it was pointed out after (2.91. The vector-functions Jrjf3 are defined as follows. In the 
neighbourhood of the point x1 = 0 with a hole, they satisfy the uniform equations (2.7) and (29, 
with h&r) instead of H&i), and according to (1.2) they can be expanded in series 

qj+3 (x,) = @J/+3 (X*)+(l,IX,I’-2m).O(lX*I~~+‘), Xl’fO (3.5) 

The proof of the existence of the required solutions follows the usual scheme: the asymptotic terms Zi” of 
(3.3) are multiplied by cutting-off functions x5 (x,), the discrepancies p, p’ of the resulting products in the 
uniform Iimit problem (E = 0) (1.3), (1.4) are then calculated and, finally, the “energy” solutions Z’j of the 
problem in a0 which compensate the discrepancies are added. We will explain why it is possible to find 
solutions Z’j with finite energy. The procedure used to construct the formal asymptotic form described at the 
beginning of Sec. 2, gives terms of the series Uk with k = 4, 5, . . . . If (v, w) = I@“, then according to (3,5), 
(2.14) and (2.5), 

I u*w <c,ix, f 
Pj+ (k- 1)(2m-1) 

Gt,lx I(k-3)t2m--1)--1 f (3.4) 

Thus, replacing the operator U in (3.3) by (3.4) with a large number of terms of the series, the discrepancies 
can be made to decrease as [x/+0 as rapidly as desired, and this removes the need to consider admissible 
singularities at the tops of peaks. Since, from (3.6) the derivatives of the functions U,” are quadratically 
summable, it is sufficient to take four terms of (3.4) when constructing the energy correction Z’j. Thus, for the 
existence of the required vector Z1j it remains only to verify that the loads fj, pi are self-balancing. We will 
denote by a(d) the region &,\Qd with “broken-off” peaks, where O<d is a small number, and Qd = {x: 

l%l<d, IxzI<c~) is a rectangle whose boundary intersects f& in the segments Z’(d) = {x: xi = fd, 
-h_(~:d)Cx2Ch+(zkd)}. WeputX’=e’,X2=eZandX3(~)=(-.x~r~1). Wehave 

j flf.Xkdx+ a& &Xkdsx = iim z(- _f Xk +L(xtZf*)dx + f Xk . 
00 0 d-c0 * n(d) aS2(d)nan, 

(3.7) 

By virtue of (2.5) we have the equations 
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o,,(Zi~)=*(a,u~+3-xla:~~+3)+(3*+4r)(l/~x:a:~1+3-Y2a:~~+3)+ 

+ (a + g)x, a: f-01: + h’_)a;\lr, i+3+2(h+-h_)a,u, ) 
j+3 

0,1(Zi+)=*C/2X:a:lrl~+3 -Xta:v, i+3~+t/,*a,(-(h:+hl_)a:yi+3+2(h+-h_)a,yI 

a, =a/ax,, A = 4e((h + p)@ + 2/&.)-l 

(3.8) 

Now, evaluating the integrals, we have 

r.l ,tk=Asi,k+O(l), d-0 

Thus, the limits (3.7) become zero, that is, the loads are self-balancing and energy corrections Z” exist. We 
note that the same calculations (applied to the Betti formula for vectors u” and Zi) can be used to find the 
constants ki from (3.1) and (3.2) 

k/=-JZ/.pdx, j= 1.2.3 (3.9) 
r 

It turns out that if p (0) #O, there is no solution of problem (1.3)) (1.4) which possesses finite 
energy in Ra . The procedure used to find the solutions u” with the smallest possible singularities is 
the same as before: we construct a part of the asymptotic series and select an asymptotic correction. 
Only the principal singular term of the asymptotic form is then needed. Returning to the algorithm 
of Sec. 2, we arrive at a system of ordinary differential equations (2.6), (2.7) in which the H* are 
replaced by a+xf” and F1 = -Avlpl(0), &(x) = A-‘(-~~(0) +p1()2a_mx:“-‘. The particular 
solution of this system has the form 

~~~~l~~~~~I~~=P~~~~~~1~~l~~~1~~l~~~Pz~~~~~2~~l~~~2~~~~~ (3.10) 

v’(xr) = A-‘A? [4(& t a:) + 6(2m + l)-‘a_ (a: -a?)] (2 - 2rn)-‘~:-~~ 

w’(x~)=A-~A;~[~(&~~(IZ_)+ 12(2m+ 1)-‘a_@+ ta_)](3-4m)-‘(2-4m)-‘~:-~~ 

v*(q)= -A-1A;33(u+ -~_)(3-4m)-‘x;-~~ 

w2(x1)=-A-‘A;36(3-6m)-1(4-6m)-‘x;-6m (3.11) 

If m = 1, the multiplier (2 - 2m)-‘xfP2” in the first row of (3.11) is replaced by In )x1 1. 
The functions (3.11) define the asymptotic form of the solution 

~o~~~~~~~,~2,al~~,~IPl~~~~~1~~~~~~~~~,~~~P2~~~~~2~~~~~~2~~~~~l (3.12) 

If p2 (0) # 0, the only important term is the second one in the brackets, which describes the 
principal term of the asymptotic form. The lowest-order terms after it, which depend, for example, 
on (&p)(O), are of a higher order than the expressionpr(O)( vi, w’). This expression predominates if 
p2m = 0. 

4. THE ASYMPTOTIC FORM OF THE SOLUTION 

We will assume first that p = 0 in the neighbourhood of the point 0. For the principal 
approximation to the solution of the problem (1.3)) (1.4), it is natural to take the solution u” of the 
limiting problem (1.3), (1.4) in no. This solution satisfies the boundary condition (1.4) on I’, and 
outside the neighbourhood of the ligament it leaves a small error O(E) in the condition on the 
contour I,. However, it is unsuitable as an approximation to the solution u (E, x) near the point 0, 
because it can have different limits as x3 +O [compare this with (3.1) and (3.2)]. Thus, using the 
method of matched asymptotic expansions, we select a different representation of the vector u (E, x) 
on the ligament. For small x we shall therefore look for the principal term of the asymptotic form in 
the form 

(4.1) 
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Here +j+3 are the solutions of (2.12) described in Sec. 2, U is the operator of (3.4), and Aj(e) are 
quantities to be determined. Using (2.15), we separate the non-decaying terms in the asymptotic 
form on the right-hand side of (4.1) as & + f ~0. Returning to x coordinates, according to (1.5), we 
find that these terms are equal to 

f e-7[C13A1je) +C33A3(E)l(-x2rX1) 

Comparing the last expression with the asymptotic forms (3.1) and solving the system of algebraic 
equations using (3.2), we find 

0 A2(E)=A2=k2c;: 

AP(‘) = e--%4; + O(e7) (p = 1,3) 

A;=k~cgsd-~, A;=-klc13d-‘, d=c,1c33-~:3 

(4.2) 

Thus, the principal term of the asymptotic form of the solution u (E, x) on the ligament must be 
found using (4.1), with Ai( j = 1, 2, 3 replaced by E -“A:, Ai, CaA! from (4.2). [Comparing 
(2.4) and (4.1), we see that r = -a.] We now construct the next term &.P of the outer expansion. 
The choice of the power p of the small parameter is governed by two factors: by combination with 
the lowest-order terms (as &+ + CQ) of the expansion of the sum in (4.1) and by compensation of the 
error O(t) left by the vector u” in the boundary condition (1.4) on I,. According to (2.19, (2.14) 
and (1.5) the lowest-order terms have the form 

u(~, .g2, a/at,)(A,(E)JIo4(5:r j+A2(~)~05(fl)+A3(~)JIo6(~I))+. . . = 

=U(l,x~,a/ax,)~~-QA~~~-*~J1~4(X~)+AXe3-3~~o5(~~)~ 

t r-“&3-2~lj06(X*)l t . . . (4.3) 

The dots here denote unimportant terms. It is clear from (4.3) that the first term in brackets has 
the lowest index. This index p= (Y = 1 - y is less than one, and so the second term of the outer 
expansion is found by the matching procedure. Recalling the expansions (3.3) of special solutions 
Zj, we conclude that 

E’-7U1-Y(X)=EI--rA~Zl(x) (4.4) 

When constructing the next terms of the asymptotic form, it is necessary to allow for discrepancies 
in the boundary condition on I and apply the matching procedure to the lowest terms of the series of 
special solutions. We shall merely point out the principal asymptotic correction (4.4) far away from 
the ligament and turn to the case p(0) #O. Suppose first that p2#O; in (3.12), we change to rapid 
variables (1.5) 

zP(e,x)~e-4~+’ WcE2, a/aF1)(v2(11),W2(51)) 

Thus, for the matching procedure, we need to construct a solution (u2, w2) of (2.7) and (2.8) with 
right-hand sides Fi = 0, F2 = -RP1p2(0), which has as its asymptotic form as &--+ +m the quantity 

]v2(5r), w2(5d1. Th e answer is written using the operators Ri from (2.12) 

(u~,w~)=~~(O)A-~(RJ~,R~W~) 

v’(~,)=H(E,)-‘[4~l(H,(~,)‘+H-(~,)~)--6(41~: -c2)W+(W2 -JU~,)2)1 (4.5) 

h’2&)=H&I-4 [6c1(H,(5113 +H-(tr)3) - IX41E.t -~2)W+(h)~ -fUf,)‘)l 

~~2(wh =.p’(EI)dF, =o 
0 

(4.6) 



658 S. A. NAZAROV and 0. R. POLYAKOVA 

The functions H* in (4.5) are given by (2.9), and the constants ci and c2 are found uniquely from 
(4.6). The principal term of the asymptotic form in the case p2 (0) = 0, p1 # 0 has the form 

U(E,X)M3Q +i U(E,~2,a/a51)(v’(~l),w1(Eli) (4.7) 

We note that representations (4.4) and (4.7) agree with (2.4) for r = -4a+ 1 and 7 = 3~+ 1, 
respectively. If m > 1 

We emphasize that the last equation serves to find the constant c3. Formulae (4.8) still hold when 
m = 1, but the odd functions V' and W1 possess the asymptotic form 

v’(f1)-2&~(2a: -a+a_ tal)&’ EK,$;’ 

h’1(E,)-2A;3(3u+ -a_)[i3 

Relation (4.7) for w1 makes sense, whereas the action of the operator Ri on V’ is not defined. It is 
therefore necessary to change the expression for the function Y’. We will put 

t, 

and the quantity C(E) is chosen so that 

u’&)=Kh@ I El l)+O(l h I-‘), I El I+- (4.9) 

Not that, according to (1.5), changing from coordinates 5 to x eliminates lne from (4.9). This 

circumstance allows the expansions (4.6) and (3.12) to be matched. 

5. DISCUSSION 

1. Kern’s weighted inequality 
In proving the solvability of the limit problem in f& and the estimate of the solution of the problem in R, , a 

special modification of Korn’s inequality must be used. With the aid of the methods described in [14, 151 we 

obtain the following. Suppose that the vector uE W:(s1,) 1s subject to conditions which eliminate arbitrariness 

in the choice of the rigid displacement 

~(x,u,(E,X)--XI(I,(E,X))dsx=O, ~ui(E.x)dsx=O, i= I.2 
I- 

Then 

(5.1) 

in which E is a functional of the elastic energy and d(x) = 1.x 1”“. The constant c is independent of both u and 
E E (0, Q], and inequality (5.1) remains true even when E = 0. 
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2. ~~t~~cation of the asymptote form 
In previous sections, we constructed inner and outer expansions u’““(e, 5) and uext(e, x) for the solution u. In 

view of various features of the construction of the global asymptotic approximation (compare this with [13, 
16]),_we will describe it in detail. Let x be a smooth cutting-off function in 0,; it is equal to zero outside the set 
VfI R,, and on the ligament X(X) = x&i), wherexcfxi) = 1 for 1.~1 ]<pz and po>O. Suppose also that Uext(e, 
ni , la (x~)-~ [x2 + h_(xl)]) represents the outer approximation uext(e, X) on the ligament in special variables. In 
addition, we assume that the vector function uext is continued and remains smooth beyond the set f;tc\O. The 
global approximation mentioned above has the form 

(I- xOrNuextfV)+ x(x)(1- XO(E ~x,)~+X(x)(l-xXp(E-~X,))UeX~(~,Xt,[C+h(x,)l-’ Y 

x [x,+h_(x,~f)+X(X)“i”~(E,E-~X~,E-~X~)~X(X)(1-xXg(t ‘~x,))P(c*x~ (5.2) 

Here Uar(e, x) denotes the genera1 terms of the expansions of the vector functions uext and uint as x-0 and 
x1-+ ~1. This quantity is allowed for twice in (5.1), in both the second and the third terms, but this can be 
remedied by subtracting it. Substituting (5.2) into (1.3), (1.4), calculating the corresponding discrepancy and 
applying inequality (5.1) we obtain an energy estimate for the difference between the true solution u of 
problem (1.3), (1.4) and the asymptotic solution (5.2). We note that, on the basis of local estimates of the 
solutions of elliptic boundary problems [17], pointwise closeness of the above solutions can be established. 

3. Stress concentration on the ligament 
We will first consider the situation when p (0) = 0. According to Sets 3 and 4, far away from the ligament the 

asymptotic form of the solution has the form 

u(f,X)-UO(X)+E’-Yul-7(X)+ ..‘ 

Thus, outside the neighbourhood of the point 0, the stresses a(u; e, x) are bounded. Owing to the singularity 
of the vector (4.4) at zero [compare this with (3.3), (3.5)], these stresses increase as x+0. Thus, the stress 
concentration observed on the ligament is defined by the inner expansion (4.1) (boundary-layer type solution). 
Starting from (4.1), (4.2), (2.12), (2.13) and (2.5) we have 

o,,@;E,X)-e --fA I: 
p= 1,3 

ApIP -Epf(E,)l+. . . 

u,z(u; E,X)-c-~+aA I: A~[1/3E:a,~g(#,)-Ela,\Jlf(E,)+D(\lrP;E,)l+... 
p=1,3 

u*,(u; 6X) -e -7+ah(X+2&-* z1 A;;[(3h+4r)(l/,t:a:O~(Ei)-‘/zF:a:~lf(E,))+ 
p = I,3 

+(h+p)a,L)(*P; t,)] +. . . 

D(~;E,)=~,I-(H,(E,)~~H_(E,)‘)~~,(C,)+~(H,(~,)-H-(E~))*,(C,)J, a, =a/ab 

It is clear that the component vi1 (u) is the largest; in the main, it is a linear function of the variable x2 and 
has order e-Y. 

If p(O)#O, the calculations are carried out using formulae (4.4), (4.5) and (4.7) (4.8). Again, the 
highest-order term is the stress all(u), where 

o,,(u;%x)-E -‘+YPr(O)(~‘(E,)-12W’(E‘))+E-~+‘~PB(O)(V1(EI)-~PWa(5,))+... 

In other words, when pl(0)#O, p2(0) = 0, the stress ai1 (u) on the ligament is of O(E-‘+~). If p2(0)#0, 
cl 1 (u ) has order e-*+’ y. 

4. Modifications of the geometric shapes 
The region illustrated in Fig. 1 remains connected. Another possibility that could be considered is that, when 

E = 0, the region flG could split into two sets @ and 06 (Fig. 2). If the load p applied to each of the contours 
a% is self-balanced, the construction algorithm for the asymptotic form of the solution is simplified and the 
boundary layer can be found without the use of the vector function (3.3). The point is that there is an energy 
sotution u”’ of the limit problem in the region fib which can be found apart from the rigid displacements and 
we can therefore assume that u’*(x) = o(exp(-&lx1 11-2m)) as x1-+ 20. This means that we need only allow 
for discrepancies which arise due to regular perturbation of the boundary. But if the principal vector (Ff, Fg) 
and principal moment F$ of a load applied to a@ are non-zero, there is no energy solution u”*. Taking into 
account obvious relations (F]$ = +Fi) and repeating the calculations of Sec. 3, we can see that u”* of the limit 
problem exists which possesses the asymptotic form 
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FIG. 2. 

3 

g’(x)=+ x FiU(l,x,,a/a~,)ui+3(x), x,-i-o (5.3) 
j= I 

Performing the matching, we look for the inner expansion in the form (4. l), where AI(e) is given as follows: 

A,(E)=c-*~F,, A,(E)=F~, AJ(~)=/‘+-IF3 (5.4) 

We should emphasize that the sum over k = 1, 2, 3 of the expansions (2.15) of the solutions $j1+3 does not 
affect the principal terms of the asymptotic form of the stresses Cjk(U; l , x), since the solutions (2.10) 
correspond to rigid displacements which constitute the arbitrariness in the choice of the solutions of the limit 
problem in a,‘. The stresses on the ligament are calculated with (4. l), (5.4). We should merely point out that 
when F,#O, uit(u) has order l -*, and when F3 = 0 and F2#0, this correction is equal to e-‘+ Y Finally, if 
F3 = F2 = 0 and Fi #O, then gll (u; E, X) = O(E-l). In conclusion, we note that the procedure given here can be 
extended to the case where two bodies are connected by several ligaments (such as strips with a round hole). 

5. Fracture of a ligament 
We will now consider the region shown in Fig. 1, and suppose that p = 0 near the point 0. Using (4.4), and 

the fact that the global approximation of the solution on nV is the same on the whole as the sum 
uO(x)+e ‘-yA;Z1(x), we calculate the asymptotic expression of the potential energy of deformation of the 
body Cl, 

n(u;52,)=E(u;~,)-/u.pds,=-‘/2lu.pds,= -%JP.pds, -1/2E’--7A~SZ’.pdSX+O(E)= 
r I‘ r l- 

=n(uo; a,)+t-‘-ye,,k;d-’ +0(c) (5.5) 

We note that c,,<O, d>O, that is, the second term in (5.5) is negative. Let Cl: be a region in which the 
ligament has been torn apart (so that the arc joining points on opposite sides of the ligament is supplementing 
the boundary a&). As in 4, in the asymptotic expansion of the solution u’(E,x) of (1.3), (1.4) in sl,, the 
boundary layer (4.1) and correction (4.4) to the outer expansion disappear, so that on IYV 
U’(E, x) = P(x) + O(E). Thus rI(u’; n:) = rI(u ‘; a,)+ O(E). This means that the increment of potential 
energy of deformation is l 1-Yc33k:d-’ +0(e). The increment of surface energy is O(e) and, therefore, the 
energy balance is destroyed in the case of small E. Thus, quasistatic fracture of a ligament is impossible within 
the framework of the Griffith hypothesis. 

6. DIRICHLET’S PROBLEM FOR A BIHARMONIC EQUATION 

In the region Q described in Sec. 1, we consider the boundary-value problem 

A%(E,x) = 0, XESZ, 

w(E,x)=(P-(x), a,w(E,X)=$-(X), XEr 

w(E,x)=~+(x), a,W(E,x)= G+(X), x or, 

(6.1) 

(6.2) 

(6.3) 

This problem corresponds, for instance, to the bending of a plate with a rigidly fixed edge: in that 
case C2, is a surface in the middle of the plate, and inhomogeneity on the right-hand side of (6.1) is 
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eliminated by partial solution of a biharmonic equation in the plane. The Dirichlet conditions 
simplify the algorithm for constructing the asymptotic form; a boundary-layer type solution is 
calculated, whatever the solution of the limit problem in CI,, (see [Xl). In fact, on the ligament, the 
asymptotic series is sought in the form 

(6.4) 

Substituting (6.4) into (6.1), we find that W0 is a cubic polynomial in the variable i. The 
coefficients of this polynomial are found for boundary conditions (6.2) and (6.3) 

Iv&) = p-(o) + [$0+(o) - (p_(O)] (3t2 - 2P) (65) 

All the terms of the series (6.4) can be found, as in [13, 161, by writing the biharmonic operator 
and the derivative 8, using the variables x1 , t and expanding the smooth functions rp’, I,!? in a Taylor 
series. 

Another possible way of interpreting the system (6.1)-(6.3) is as a problem for finding the Airy 
function. At first glance it would appear that the asymptotic form of the stress a(~; e, X) on the 
ligament can be found explicitly using (6.5), but this approach gives rise to implications, owing to 
the multi~nnectedness of the region a. 

We recall some of the properties of the Airy function (see [18] and elsewhere). It is defined to 
within a linear function and the arbitrariness can be removed, for instance, by the condition 
cp- = +G- = 0. Let w be a solution of problem (6.1)-(6.3), for which the right-hand sides p+ and I/I+ 
are calculated with respect to the vector p = (pl, p2) from (1.4), using the formulae 

cp’C+))= 1 +x,b)*x*(s)+(x2P1 -X$2d7 

J 8 (6.6) 

Jl’WN = %(W - J Pz(7V7)+ n2@)0 + / Pl(7)dZ) 
0 

Here S is the length of the arc on l? and x(s) is the corresponding point; x(0) = 0. The unctions 
(6.6) are smooth, because the load is self-balancing. 
problem with the following right-hand sides 

Ipi 10, $$= 1, $Yl(x)=xg 

J/; = 0, $0 = 0, G;(x) = Q(X), 

The Airy function obeys the relations 

Then let wj be the solutions of the same 

k= 1,2, i=O, 1,2 (6.7) 

F=wtAowo+AIw, +A2w2 (6.8) 

F,22 =oYI@), F,,, =~22@), F,12 =--(112(u) (6.9) 

The constants Ai are found from the condition that the displa~ment vector is uniquely defined by 
(6.9). It has been verified [19] that this condition can be written as follows: 

(‘F,w,)=O, i=O, 1,2 (6.10) 

(F,G)= $ j( a2F a2G - A a2F a2c 

/, k,= 1 R ax,ax, ax,ax, 

We note that the functions in (6.6) are equal to zero at the origin of coordinates. From this and 
formulae (6.7), we conclude that the principal term (6.5) of the asymptotic form of the Airy function 
on a ligament has the form A0(3t2-2t3). According to (6.10) and (6.8), (6.6), the value of A0 
depends globally on the load p (that is, on its values at all points of I) and to find A0 we need to 
know the function w. completely. Thus, as in the solution of (l-3), (1.4), we obtain integral 
formulae of the type (3.9). 
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7. THREE-DIMENSIONAL LIGAMENTS 

Suppose that the three-dimensional elastic body 0, has a hole, the boundary I, of which has 
approached the outer surface I of the body. We denote by o C I the set to which surfaces I and I, 
stick as e+O. Thus, fl, contains a thin ligament in the neighbourhood of o. The algorithm for 
constructing the asymptotic form for the problem of the theory of elasticity in R depends on the 
structure of the set o. If w is a smooth closed contour, this algorithm does not differ essentially from 
that given in Sets 2-4; the only new factor is the dependence of the limit problem (2.7), (2.8) on the 
variable s on the contour am. In the case where w consists of the two-dimensional region on I and its 
smooth boundary am, the methods described in [20, 161 can be used to construct the asymptotic 
form of the stress-deformation state of the body (a plane region with a hole separated from the 
outer contour by a thin “beam” has been investigated in the same way in [4, 5, 161). 

We will consider the case in which the set w consists of the point 0 only. Near 0, fl is defined by 
the relations 

-h_(X’)<XJ <eth+(x’) 

h,(x’)=r*m(a*(V)tO(r)), r-*0 (7.1) 

Here x’ = (xi, x2) are Cartesian coordinates in the plane, (r, cp) are the corresponding 
coordinates; a+ (cp) are smooth functions on the circumference; a+ +a_ b-0; m = 1,2, . . . . 

polar 

In In, we will examine problem (1.3), (1.4) in which p = (pl, p2, p3) is a smooth self-balanced 
load on I, and, for simplicity, we take p = 0 near 0. As in the two-dimensional case, we will look for 
the asymptotic form of the solution by considering two limiting problems. The first is Eq. (1.3) in Q, 
with boundary conditions (1.4) on (I U To)\O. The second is a system of equations in the R2 plane, 
which describes the effect of a boundary layer on the ligament. This system is constructed in the 
same way as in Sec. 2. Below we will refer to the formulae of Sec. 2 with variables 

c; = (E’, 1319 E’ = (.$I , Ez) = e-7x’, f3 = E_‘XJ, 7 = (2m)_’ (7.2) 

instead of those in (1.5). 
In the asymptotic series (2.4) uj(.$‘) and Uj(t) are three-dimensional vectors U’ = (uj’, wj), 

uj’ = (ujl , II-$). Let ui’ = u, iv’= w, and suppose that the other variables uj’, i~j are equal to zero. 
Splitting the operators as in (2.1) and (2.3), we obtain the representation [see (2.91: 

P’= 0, lJ3” =o, u” = &VW, u: =o 

U 2’=0, U,z =A(Xt2p)-‘(jr,~~A~-~~v.u) 

U 3’=(ht2p)-1(3A+4~)VAw’/6~~- [vut2(Xt21.()-‘(At~?Vv.u]~/L~ t 

t(21.0-‘[Q(H+-H_)u- %Q(H,Z tH?)vw] (7.3) 

H+(E,Z’)=1ta+(~)P2m, H_(E,.f)=(l_(~)p2m; p=l$I (7.4) 

Q=<Q,,Q,), Q/GW’,v>u(f’)= i 

The solvability conditions for the calculation of U3’ and Uz form a system of partial differential 
equations 

-Q(H+tH_;~‘,V)ut)IQ(H,--2; t’,V)Vw=F’ (7.5) 

V. 1-%Q(H,2 -HZ; f’,v)ut ‘/sQ(H+3 +H:; [‘,v)Vw f =F, (7.6) 

Near the point 0, the asymptotic form of the solution of the limiting problem is 00 can also be 
described by exponential solutions of the system (7.5), (7.6), where 5’ = x and H, (x’) = r*“‘a, (cp) 
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(see [21, 221). A complication arising when investigating system (7.4), (7.5) is that the differential 
operators that it contains degenerate at r = 0 (or increase inconsistently as p+ +m). However, by 
multiplying Eqs (7.5) and (7.6) by r-*“’ and r-4m, respectively, and replacing the function w by 
w = r2m~, the system is brought to a form which can be used with the results of [23,24]. Thus, the 
exponential solutions mentioned have the form 

u(x’) = r* 

k 
W(X’)+‘+‘--Z~ x (i!)-‘(lnr)i~(k-/)(37) 

j=o 
(7.7) 

Here k = 0, . . . , J - 1, and A and (V(O), WC’)), . . . , (VcJ-‘), WcJ-‘)) are the eigenvalue and 
Jordan chain (eigenvectors and adjoint vectors) of a bundle constructed in a standard way [23], on 
the unit circle. 

Six solutions can be written explicitly. 

(13 O,O), (0917 O), (0,0?1), (-x2, x 1 , 01, (0, 0, x 1 )I (0.0, x2 1 

These correspond to eigenvalues A = 0, 2m - 1, 1, 2m and, by virtue of (7.3), generate rigid 
displacements which also determine the principal term of the asymptotic form of the solution u” of 
the three-dimensional problem in the limit region a0 

Uy(x)=cl - 2~3x2 t b2x3 t O(rRe “0) 

u5(x)=c2 t&x, t blxs t O(rRe *o) (7.8) 

n!(x)= c3 - b2xl - blx2 t O(rRe ‘0 + 1-2m) 

Here ho is the first eigenvalue (with smallest real part) of the bundle in the half-plane {AEC: 
Re A > -m} which is different from the numbers 0, 1,2m - 1,2m. 

We should emphasize that (7.8) is very different from (3.1): in the two-dimensional case, the 
remainder decays exponentially as one approaches the top of the peak, but exhibits exponential 
behaviour in the three-dimensional case only as r+ 0. This complicates the procedure of matching 
the total, outer and inner expansions, although the principal term of the boundary layer is easier to 
find in this problem. The point is that there is another difference between (7.8) and (3.1) due to the 
different geometries of the limit regions. In the problem of Sec. 3, the point was the top of two 
peaks at once, the series (3.1) for the two peaks containing different constants, k,*, and solutions 
(2.15) which allow for discontinuities k[ -k,r are included in the two-dimensional boundary layer 
(other possibilities associated with the geometry of the set R. were discussed in point 4 of Sec. 5). 
The series (7.8) has the same form, however the point 0 is approached, there are no discontinuities, 
and the principal terms of the boundary layer are given by the formula 

(CltC2,C3)+ET(-b3~2,b31*,-b2~l -6152)+E(bz~J,b1~3,0) (7.9) 

Note that (7.9) corresponds to zero stresses, and so the asymptotic form of the stress-deformation 
state of the ligament is determined by the lowest terms of the boundary layer. To construct these, 
we need to find special solutions (7.7) of the uniform system (7.5), (7.6) in the case when 
H? (x’) = r*“‘u* (cp), calculate the coefficients of those solutions in the expansion of the field Z.L’ and 
solve system (7.5), (7.6) in the case (7.3), which has the given asymptotic form at infinity [see 
formulae (3.1), (3.2), (3.9) and (4.1), (2.15), f or which it was possible to find explicit solutions, 
owing to the fact that (2.7), (2.8) is a system of ordinary differential equations]. 
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